1) The function $f(x)=x^{2}-4 x$ is graphed below.

1a) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=0$

Answer $\int_{-1}^{0}\left(x^{2}-4 x\right) d x=2.33$
1b) Use integration on your calculator to determine the area shaded below between $x=0$ and $x=4$

Answer $\left|\int_{0}^{4}\left(x^{2}-4 x\right) d x\right|=|-10.67|=10.67$
1c) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=4$

answer $=\int_{-1}^{0}\left(x^{2}-4 x\right) d x+\left|\int_{0}^{4}\left(x^{2}-4 x\right) d x\right|=2.33+10.67=13$
3) The function $f(x)=2 x+2$ is graphed below

3a) Use integration on your calculator to determine the area shaded below between $x=-1$ and $x=2$

3b) Use integration on your calculator to determine the area shaded below between $x=-3$ and $x=-1$

$3 c)$ Use integration on your calculator to determine the area shaded below between $x=-3$ and $x=2$

5) $f(x)=2 x-14 ;[4,8]$

5a) Sketch a graph of the function $f(x)$ over the given interval $[a, b]$.

5b) Find any x-intercept within the interval $[a, b]$.

$$
\begin{aligned}
& \begin{array}{l}
2 x-14=0 \\
+14+14 \\
2 x
\end{array}=14 / 2
\end{aligned}
$$

sc) Find the area between the x-axis and $f(x)$ over the interval $[a, b]$ using definite integrals.

$$
x=7
$$

Below the x-axis: $\left|\int_{4}^{7}(2 x-14)\right| d x=|-9|=9$
above the x-axis: $\int_{7}^{8}(2 x-14) d x=1$

$$
\begin{aligned}
8^{2}-14(8)=-48 \quad & x^{2}-\left.14 x\right|_{7} ^{8} \\
7^{2}-14(2)=-49 & =-48-(-49) \\
& =-48+49
\end{aligned}
$$

Answer total shaded area $9+1=10$

$$
\begin{aligned}
& =\left|2 \cdot \frac{1}{2} x^{2}-14 x\right| \\
& \left|=x^{2}-14 x\right| y \mid \\
& 7^{2}-14(1)=-49 \\
& y^{2}-14(y)=-40 \\
& -49-(-40) \\
& |-9|=9
\end{aligned}
$$

7) $f(x)=3 x^{2}-3 ;[0,3]$

Ta) Sketch a graph of the function $f(x)$ over the given interval $[a, b]$.

Tc) Find the area between the x -axis and $\mathrm{f}(\mathrm{x})$ over the interval $[a, b]$ using definite integrals.
Below the x-axis: $\left|\int_{0}^{1}\left(3 x^{2}-3\right)\right| d x=|-2|=2$
$\left|x^{3}-3 x_{0}^{11}\right|=|-2-0|=|-2|=$ $1^{3}-3(1)=-2$
$0^{3}-3(0)=0$
above the x-axis: $\int_{1}^{3}\left(3 x^{2}-3\right) d x=20$

Answer: $|-2|+20=2+20=22$

$$
\begin{aligned}
& \int_{1}^{3}\left(3 x^{2}-3\right) d x \\
& =\int_{1}^{3} 3 x^{2} d x-\int 3 d x \\
& =3 \int^{3} x^{2} d x-\int 3 d x \\
& =3 \cdot \frac{1}{3} x^{3}-3 x \\
& =x^{3}-3 x l^{3} \\
& =18-(-2) \\
& =20
\end{aligned}
$$

$$
3^{3}-3(3)=18=x^{3}-\left.3 x\right|_{1} ^{3}
$$

9) $f(x)=4 x^{3} ;[-2,1]$
ga) Sketch a graph of the function $f(x)$ over the given interval $[a, b]$.

9c) Find the area between the x-axis and $f(x)$ over the interval $[a, b]$ using definite integrals

Below the x-axis: $\left|\int_{-2}^{@}\left(4 x^{3}\right)\right| d x=|-16|=16$

$$
\left\lvert\, 0^{4}-\frac{(-2)^{-2}|=|0-16|=|-|6|=16}{\left(4 x^{3} d x\right.}\right.
$$

$$
\begin{aligned}
\int_{0} 4 x^{3} d x \\
=4
\end{aligned}
$$

Answer: $|-16|+1=16+1=17$
11) $f(x)=3 x^{2}-27 ;[-1,5]$

11a) Sketch a graph of the function $f(x)$ over the given interval $[a, b]$.

11b) Find any x-intercept within the interval $[a, b]$.

$$
(3,0)
$$

$$
\begin{gathered}
3=0 \\
\text { No } \\
\text { No l }
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}-27=0 \\
& 3\left(x^{2}-9\right)=0 \\
& 3(x+3)(x-3)=0 \\
& x+3=0 \quad x-3=0 \\
& x=-3 \text { Nor nerval } \quad x=3
\end{aligned}
$$

11c) Find the area between the x -axis and $\mathrm{f}(\mathrm{x})$ over the interval $[a, b]$ using definite integrals
Below the x-axis: $\left|\int_{-1}^{3}\left(3 x^{2}-27\right)\right| d x=|-80|=80$

$$
\begin{aligned}
& \left|x^{3}-27 x_{-1}^{3}\right||=|-54-26|=|-80|=80 \\
& \left.(3)^{3}-2\right)(3)=-54 \\
& (-1)^{3}-27(-1)=26 \\
& \text { above the } x \text {-axis: } \int_{3}^{5}\left(3 x^{2}-27\right) d x=44 \\
& \text { Answer: }|-80|+44=80+44=124 \\
& (5)^{3}-2(5)=x^{3}-27 x_{3}^{5} \\
& \begin{aligned}
& =-10 & =-10-(-54) \\
\left.3^{3}-2\right)(3) & =-54 & =44
\end{aligned}
\end{aligned}
$$

